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1. INTRODUCTION

Within the last few years there has been a renewal of interest in wideband radar
systems and techniques (References 1 through 3). This interest is largely because of the
prospects for high-resolution downrange target imaging that, because of technological
advancements in signal generation and processing, are only now becoming feasible. It is
also due to inherent differences between the natural representations of narowband and
wideband radar signals and a new appreciation of how these differences might be
exploited.

The purpose of the present discussion is to examine some of the results from this
field that are relevant to the applied problem of increased resolution in radar targetimaging. Much of the recent work in wideband ambiguity functions has had a decidedly
mathematical flavor that, regrettably, has put it out of the reach of many of the radar
engineers who might be expected to benefit most from it. We shall avoid this approach
whenever possible and choose explanations that are more "classical" in appearance. This
means that we will invariably be less accurate in our definitions, and the reader is advised
to refer back to the original references for completeness.

We begin by briefly reviewing the standard time-frequency methods in signal
processing. We shall make no attempt to reference all of the important achievements
made by the many researchers in this field; instead, we refer the interested reader to the
excellent review of this material presented in Reference 4. In Section 5 we introduce the
wideband and narrowband ambiguity functions. These functions are keys to
understanding radar imaging, and we will show how they are related and how they differ.
While the narrowband ambiguity function is understandable in terms of time-frequency
methods, we will see that the wideband ambiguity function requires time-scale
techniques. In Sections 6 and 7 we will explore some of the differences between time-
frequency and time-scale representations and argue for choosing the latter in high-
resolution imaging applications.

2. PROBLEM STATEMENT

For a signal s(t), denote by s(tA2 the "instantaneous power" at time t and by I(o)A2

the "power spectrum" at o. We seek to determine a function P(t, w), called the time-
frequency distribution, which satisfies the marginal relations

3
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"J P(t, co)dw - s(tA2 , J P(t, w)dt = j(oA, (2.1)

and such that the total energy of the signal is given by

E= j JP(to))dowdti. (2.2)

For stochastic signals, these results reduce to their probabilistic form. For
deterministic signals, this distribution is really an energy density;, the "distribution"
nomenclature, though partly a holdover from quantum mechanics, is used because the
global average (the expectation) of a function g(t, w) is defined by

(g)- j fg(to)P(t,o)dtdo0 . (2.3)

The local or conditional mean at a particular time is defined by

Jg(t,w)P(t,w)dwo
(g),- -d (2.4)

(and similarly for the mean at a particular frequency).

Equations 2.3 and 2.4 are the main motivations for seeking P(t, o).

3. DERIVATION OFP(t,w)

The characteristic function is the expectation ofe{"+10:

M(G,r). j jei(*+÷)P(t,w)dtdW . (3.1)

4
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Characteristic functions are convenient because joint moments can be calculated by
differentiation:

(t'j 1 d M  (O, T)'*.0
i"+W de"8a" (3.2)

and so, expanding the exponential in Equation 3.1 in a Maclaurin series reveals that they
may be expressed as

M(O, Tr) = (i00) (i0)0 (t0On ) (3.3)

.... n/rn!

For functions g,(t) and g2(w), we have

(MOQ) = ý(tf g1(t)dt = J (c))g 1(i-ýL)S(w)dw (3.4)

and

(92(cW) P= O 92 (w)g(odw =JS*(t)92 (-i± )sW dt. (3.5)

Consequently, we can associate time and frequency with the operators T and W, so that

T -t W -4 -id in the time domaindt (3.6)

T i- - W - (0o in the frequency domain.

do

A function g(t, w) of both time and frequency may be formally treated in the same
way:

(g(t, W)) = s'(t)G(t,W)s(t)dt = JSi(ow)G(T, w)S(o)do , (3.7)

where G(T, W) is the operator "associated" with g(t, o). Equation 3.3 allows us to write

5
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M(G, ?) =( e'(Ut+w') )- js*(t)ei'~e'~"s(t)dt

or (3.8)

M(O, i)= ( -+ J?(w)eire•'i(o)do.

However, there is an inherent ambiguity in Equation 3.8 because the association
g(t,o ) -+ G(T,W) is not unique. (For example, Equation 3.3 also allows us to choose
e'(Or+1) ---+ e'(6r+`).) An unambiguous procedure for the association of G(T,W) with
g0, 0) sets (References 4 and 5)

G(T,W) = f JY(O, T)(O,r,)ei(Wr+t) dOdr , (3.9)

where

Y(O,?)- ý- f g(t,w)e"i(t+) dukj (3.10)

and 0(0, r) is a function, called the kernel, that must satisfy certain initial conditions if
the correct marginals are to be obtained (see below).

In the time domain, the operator eIw is the translation operator [i.e.,
•iw s(t) = eT(dh*) s(t)= s(t+ r)] and substitution results in the general form for the
characteristic function as

M(o,'r)= O(o,?)s'(u)e"is(u+ r)du. (3.11)

Inverting Equation 3.1 with M(G, T') given by Equation 3.11 yields the associated general
form for distributions:

P(t, wO) = -- Je'+(+=-" 0(0, T)s'(u)s(u + -r)dud-rdO. (3.12)

6
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There are other forms that are used frequently to define this so-called Cohen's class
of time-frequency distributions. For example, we can write

P(t, 0) = -L j jW(u,0),(9. o )e)'-' dudO , (3.13)

where

W(U,2) ff Js'*(u)s(u + ,)eiw dr (3.14)

is the Wigner-Ville distribution. In this form, the factor *(O, )e'-') may be
interpreted as a "smoothing taper."

Another form writes

P(t, O) =L j JIz(O. r) 0(O, ?)e-'( ) ddr, (3.15)

where

Z(O,r ) r - s•(u)s(u + r)ei du (3.16)
2xý

is the (narrowband) ambiguity function, which will be discussed in detail below.

4. KERNEL FUNCTION

The properties of the distribution function are a direct consequence of the choice of
kernel. This kernel, in turn, cannot be chosen at will but must obey certain integration
and transformation criteria. In particular, the kernel determines whether the density is
correctly related to the instantaneous energy and spectrum (References 4 and 5).

Integration of P(t, o) with respect to w yields

7
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JP(t,w)dW = -LfJ 6(#•i'('- •(, ?)s'(u)s(u+ ?r)dOdudr

(4.1)

= ±f ei*(*-) #(GOflý(u) d9du.

If this is to qual (tf, then

1 f e"("- (,O)d - (t-u) = (0) = 1. (4.2)

Similarly, it is easy to show that #(0, T) = 1.

We assume throughout that s(t) is normalized to unit energy, and so it also follows
that

f P(t, w)dwdt = 1 = total energy * #(0,0) = 1. (4.3)

If we require P(t,w) to be real (as is appropriate for a description of energy
density), then 0(9,1r)=

EXAMPLE 4.1

If we choose 0(0, r) =1, then we obtain the Wigner-Ville distribution (References 4,
6, and 7):

Pwv0(t o)) = . e-s" (t)s(t + 'r)dr. (4.4)

The Wigner-Ville distribution has been very well studied, and it is known that it may
introduce reconstruction artifacts for multicomponent signals (References 4, 8, and 9). In
particular, this distribution suffers in that it may not be zero even when the signal is.*

8
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EXAMPLE 4..

The Choi-Williams distribution results from setting 0(0,,r) = e-'•' so that
(References 4 and 9)

The Choi-Williams distribution can be thought of as a "smoothed" Wigner-Ville dis-
tribution with the parameter a chosen to control spurious cross-terms.,

EXAMPLE 4.3

The choice 0(0,,r) = ea' results in the Kirkwood-Rihaczek distribution (References
4, 10, and 11):

P (tW) (4.6)

This is sometimes called the complex energy spectrum.,

The distributions of Examples 4.1 through 4.3 result in the correct marginal
distributions. Moreover, the Wigner-Ville and Choi-Williams distributions are also real
valued. However, these distributions generally are not positive and it may be difficult to
interpret expectations based upon them (Reference 4). A distribution that is always
positive is the spectrogram.

EXAMPLE 4.4

The spectrogram,

PsPW (t, 0) = •7lInu- e_.ms( -r)h( - t)d{, (4.7)

is obtained from

e(-, )Je- h(u + T)h(u)du. (4.8)

9
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The spectrogram is generally an easy-to-interpret distribution. However, its flaw is
that it does not yield the correct marginals (satisfying 0(0,0) = 0(0, •r) = 1 requires that

Ih(t) = 6(t) and Ii(o)J2 = 8(w), and this is impossible). In practice, the "window" h(t)
is tailored to a particular application with I(tf2 looking "more like" a delta function if

good time resolution is desired and A(I looking more like a delta function if good
frequency resolution is needed.*

A positive distribution that does yield the correct marginals is

P(t, co) = k(t) V(04 (4.9)

This distribution is determined only by its marginals and so lacks time-frequency
correlation information (resulting in possible artifacts in signal reconstruction). In
addition, this distribution is not bilinear. In fact, it is impossible to have positive joint
distributions with correct marginals, which are bilinear in s(t). However, it is possible to
satisfy positivity with correct marginals when 0(0, r) is a functional of s(t). In this case,
Equation 4.9 can be generalized (References 12 and 13), although a systematic procedure
for incorporating the correlation information has not been developed (Reference 4).

For any desired expectation, the spectrogram will yield only an average over the
extent of the window and can be relied upon only when the signal is short-time stationary
(Reference 8). While the spectrogram does not satisfy the marginals, its positivity is a
very useful feature. In addition, it is known that the derivative of the phase does not
always correspond to the frequency in the Fourier spectrum and so there may be an
inherent inconsistency with our original requirement that the distribution satisfy the
marginal constraints (References 4 and 14). Consequently, in the following, we shall
prefer interpretability over "correctness"-especially since it is recognized that the
current theory is not fully consistent and requires considerable further research
(Reference 4).

The behavior of the kernel and associated distribution functions under various
transformations of the signal are listed in Table 4.1 (c.f., Reference 4).

10
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TABLE 4.1. Properties of Distributions for Transformations of the Signal.

Transformation s(t) P(t, W) _ (0, _ )

Timre shift s(t + t.) P(t + t.,cO) Any

Frequency shift (co + w.) or s(t)ei't P(t, Co+ +Wo) Any

Time scaling 4j is(a() P(rt, w / a) 0(0 / a,ar) = 0(0,'r)

Freq. scaling 4I oor S(tor P(t/flp5o.) *(fO, T/ P) = 0(,, T)

Tume inversion s(-t) P(-t,-o) (-0,-) = 0(0, r)

Complex conj. s*(t) P(t,-W) O(O' ) = O(O, ')

Finally, and for completeness, we need to discuss the so-called uncertainty
principle. This relationship between the standard deviation of a function and the standard
deviation of its Fourier transform is (Reference 4)

J(t - F) 2 s(t)U2 dtJ(J(o - )2,(o2 doK)v l (4.10)

for any signal s(t).

The uncertainty principle is a relationship concerning the marginals and expresses
the well-known result that a function and its Fourier transform cannot be made arbitrarily
narrow.

11
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5. (RADAR) CROSS-AMBIGUITY FUNCTION

For a point target at distance r from a stationary radar and moving with downrange
speed v, Iv I << c, the echo returned from a transmitted pulse w#() is given by (References
1 through 3, 15 through 17)

e~t) - (c-vi_ 2r(5.1)

(The scale factor is required for conservation of energy.) This is an exact result and can
be written as

e(t) = -"w(D(t + T)) (5.2)

where D = (c - v) / (c + v) is the "Doppler stretch factor" and T = -2r / (c - v) is the
signal delay at t = 0.

The cross-correlation of a test pulsef. = -law.(a(u+t)) with a point target echo
e.(t) from w.(t) is

(e.,f 5.) = J4D'w.(D(u+T))iaw*.(a(u+t))du

(5.3)

If we define the wideband cross-ambiguity function by (References 1 through 3, 17)

A.(T,Oa) avr-'f jw. (t(U + T)) w.*(u) du ,(5-4)

then we can write

(e.,f.•Xt,a) = A.(a(T- t),D). (5.5)

12
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The narrowband cross-ambiguity function X. (r, w) can be obtained from Equation

5.4 by writing both w. and w, in the form w(t) = s(t)e"-', where w. may be interpreted
as a carrier frequency (but need not be). Substitution yields

A. (r, a) = -"Ieo Is.(a(u + r))s.(u)e& du, (5.6)

where 0- (a- 1)w.. Expanding s,(a(u+ +,)) in powers of e= 2v /(c+ v) and dropping

all but the lowest order term (i.e., restricting s(t) to be slowly varying with t in
comparison to the exponential factor) results in (Reference 17)

. 0(t, ) a 2L Is.(u + t)s, (u)e'i du = A ,(t aa)e-''v (5.7)

[Note that the narrowband ambiguity function (n = m) is the characteristic function of the
Wigner distribution. The "generalized" ambiguity function is the characteristic function
of the associated time-frequency distribution (Reference 18).]

If the echo signal is from a collection of moving scatterers with reflectivity
density p(T,D) defined in such a way that

e. (t) = 11 p(TD)-v- w,(D(t + T)) dTdD (5.8)
D D

then it is easy to show that

(e.,,f.)(t, a) =' IIoP(T, D) A.(a(T -t),DR~dT-dOa) (5.9)

0- a D

(The measure aT dD / D has important consequences later on and is motivated in the
Appendix.)

13
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The quantity (e.,.) is known as the reflectivity image and can be seen to be the
actual reflectivity density filtered by the cross-ambiguity function. In practice, this image
is obtained by cross-correlating the return signal with a family of time-scaled and shifted
test pulses and will be examined in more detail below.

The reflectivity image is generally complex-valued. For many purposes, we are
more interested in the intensity image:

2=f J f J p(T,D)p*(T',DP)x
0-0

(5.10)
xA. a(T-t),-D)AL'(a(TJ-_t)'D2:)dT'dD" dTD" Dd

A common model for the reflectivity density assumes point sources so that

p(T,D)p (T',D') = o&(T,D)8(T - T',D - D') , (5.11)

where a2 is the target cross-section density. Substitution of Equation 5.11 into 5.10
yields the (model-based) result

--. , .(t, a)- a a2(T,D)JA (a(T -t D (5.12)

Note that failure of this model (i.e., if the sources are correlated in some sense) generally
will lead to image artifacts in the form of cross terms.

Equation 5.12 may be interpreted as a (perhaps more meaningful) relationship
between cross-ambiguity functions and densities. There is a similarity between A.. and
the short-time Fourier transform. In Equation 5.6 the part of the "window function" is
played by w.(t)= s.(t)e'', and so the density appears as a generalization of the
spectrogram:

14
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A.(a•~f -= a j f w.'(a(u + t))w.(a(u + t + -r))s.(u)s,*(u + ,r)e"-'" dud? . (5.13)

Comparing this with

Pat,.?) j J f (0. ) w(v)w(v + )e'"'-w e'"-"dvd0 dr (5.14)a 4x-2_.•_

yields (after a suitable change of variables)

j 0(8. )e&d ) T) (5.15)

or

0(1,ar) = lsmu~s.u + v)e''du.(.6

This is the kernel for the spectrogram (properly time-scaled as in Table 4.1) and so it is
instructive to compare Equation 5.15 with the kernel (Equation 4.8) obtained for the
spectogram.

As discussed in Example 4.4, one of the problems with the spectrogram is its
dependence upon a predetermined size of the window function for estimating properties
of the signal. If the signal varies slowly in comparison to the extent of the window, then
the estimate will generally be good. However, if the signal varies rapidly within the
window, then the estimate may be poor. Equation 5.15 shows that the so-called
scaleogram of Equation 5.13 offers an interesting "solution" to this problem. Here, a

fixed-shape window s,(t) will be time-scaled by the factor a-' in such a way that when
the signal varies rapidly (scale decreases) the window extent will be correspondingly
decreased. Similarly, when the signal varies slowly, the extent of the window will be
correspondingly increased. This ideal is at the heart of scale-based signal processing and
has been the focus of considerable research activity (References 19 through 21).
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6. CHOICE OF SIGNALS

Because of the imaging kernels (A. or IA. r), the main problem of high-resolution
radar imagery is that of choosing a pulse w.(t) and a radar signal w.(t) that are most
appropriate to a specific imaging application.

Recall that we are concerned with the envelope s(t) of the waveform w(t) = s(t)e t .
For actual radar systems, both the pulse and the signal will be real-valued and we can
think of s. (t) and s. (t) as being the complex-valued waveforms whose real parts are the
actual pulse envelope h.(t) and radar signal envelope hk(t), respectively. For such h(t),

we have h(-w) = hi(w) so that h(t) is completely determined by its positive spectrum.
It is useful to define

s(t) =- 2J h(w)e'w dco, (6.1)
0

where the real and imaginary parts of s(t) are a Hilbert transform pair and the factor of 2
guarantees that s(t) and h(t) have the same energy. [When the spectrum of s(t) has
positive support, then the quadrature model for w(t) yields the same results
(Reference 22).] Consequently, we can identify the Hardy space
H2 (R) = is e L2(R):supp(i) c [0,..)} with the space of all real-valued functions in L2(R)

(Reference 19). H 2(R) is a closed subspace of L2(R).

The ideal imaging kernel will be one that is sharply peaked at (r,a) = (0,1) and zero
everywhere else. There are limits to how well this may be realized, however, and it is
well known that matched Gaussians are the "optimal" w.(t) and w.(t) for narrowband
ambiguity functions (optimal in the sense that they minimize the uncertainty relation).
Unfortunately, Gaussians do not belong to H2(R). What is required for any good choice
of w(t) is (Reference 19):

i) we H 2(R)

ii) w(t) satisfies the admissibility condition J1'' dow < -. [As we shall see

below, this is required if we are to recover p(T,D) from (e.,f.Xt, a), or c9(T,D) from

. (t,1a).]

16
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Note that while a Gaussian does not belong to H2 (R), the function e'" exp(-It2 ) is
very close to being admissible when 0o is sufficiently large. This suggests that matched
Gaussians (or matched Gaussian-like functions) can be expected to hold an analogous
role in the theory of wideband ambiguity functions. In fact, Grossman and Morlet
(Reference 19) have identified the envelope that "... plays-in the H 2-theory that we are
concerned with-the same privileged role that the Gaussian plays in L2-theory." For

3> 0, the function is defined by its Fourier transform as

S (CO) ex(+ j ) for0>0, (6.2)0 0 foro < 0.

[Co is a normalization constant: C. =VPxeqp(-l/413).j

If we choose w.(t)=e i.1 sm(t) and w.(t)=ei s.(t), then the ambiguity
function for these waveforms becomes

A,,,(r,a)=C,, C,.'Vae4'e e J" eip(-e+ ,,,in 2 C -P. 1n2(aoi))dw. (6.3)
0

Expanding the In 2(ao) term in the argument shows that the waveforms will be
matched if P., = = P3. In this case, we obtain some simplification and can write

A. a= e" T 4Aixjn4- a)jei'rd e-p&2 &dco (6.4)

(which must be determined numerically.) A plot of IA.(-r,aA2 for P =1 is given in
Figure 6.1.

17
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FIGURE 6.1. Wideband Ambiguity Function for !,,(w) - CO xp(-+1 , in2 )
With P= 1.

The parameter fP effectively determines the signal bandwidth. This, of course,
determines the resolution to which the imaging kernel can represent the image, as can be
seen by examining Figures 6.2 and 6.3. Smaller fP means (practically) larger bandwidth
with corresponding greater time resolution (but at the cost of scale resolution). For

comparison purposes, the narrowband ambiguity function for ^ (wo) = De(-+fp o92) is
displayed in Figures 6.4 through 6.6.

18



NAWCWPNS TIP 8098

0.8

0.6
IA12

6
0.4

0.2 4

0
0 2

2

t 4 0

FIGURE 6.2. Wideband Ambiguity Function for (M)= Celp(-Pin2 co)
With= 10.
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FIGURE 6.3. Wideband Ambiguity Function for ,(oW) -C.eXp(.-+ jn2 W)

With 1fi1/10.
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FIGURE 6.4. Narrowband Ambiguity Function k., for
S,(W)=D,eVp(-jpW2 ) With p =1.
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FIGURE 6.5. Narrowband Ambiguity Function for i,(w) = D, eV(-1)5 to2)

With 13=10.
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FIGURE 6.6. Narrowband Ambiguity Function for
)D. e.p(-½fi 02) With p = 1/10.

Of course, to be accurate, we really want neither the reflectivity image (e,f.QXt,a)

nor the intensity image I.(t,a); rather, we desire the reflectivity density p(T,D) or the

cross-section density o&(T,D). These densities are directly related to the target
properties alone, and to get at them we must choose signals that lead to imaging kernels
that are invertible.

The reflectivity image is given by

(efJ.Xta) = I jp(TD)A.(a(T - t)' dTd- (6.5)
2 a3 D
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Clearly, we need to find some Bt ( r, a) such that

p(T',D') = (ff(e.,fXt,a)B;4a(T I- t),P 2:)dtda (6.6)
0-a a

If we write B, (T, a) in the form

Bt(T,a) = 4 j w,(a(u + T))w'*(u)du, (6.7)

then it is straightforward to show that our inversion requirement becomes

p(T', D')fw 0w T)= doffp(T ,D) A.D'(T -T'),P;-L 'd'). (6.8)

If wk = w., then the admissibility condition shows that this is a well-defined
operation. However, we are back to the original problem of seeking an ideal ambiguity
function A.((,a) that is sharply peaked at ('r,a) = (0,1) and zero everywhere else.

7. WHY GO WIDEBAND?

While the constraint on the duration-bandwidth product (the uncertainty principle)
guarantees that we can never achieve the optimal imaging kernel A4,(,a) = S(r)6(a - 1),

we are able to obtain Aj(",a) = 6(r) or A,(T,a) = 8(a - 1). In fact, since we can make
multiple radar measurements of the same system, we could follow a measurement using
the waveform described in Figure 6.2 (Figure 6.5) with a second measurement using the
waveform of Figure 6.3 (Figure 6.6). Correlating such ideal measurements allows us to
achieve as much imaging resolution as we might desire. In either of these measurements
we are free to choose from a wide variety of waveforms w(t), since we no longer seek to
"optimize" against some uncertainty constraint. This freedom in choice of wQt) means
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that we can select a waveform that is suited to other aspects of the particular problem at
hand.

Even when we are not planning such correlated measurement imaging, we still are
particularly interested in high-resolution downrange imaging, since this information
might be used more readily for target imaging than cross-range (Doppler) information. In
either case, however, we are interested in those w%) that have very narrow envelopes
s(t), since these so-called wideband waveforms allow for very fine downrange resolution
of radar targets. (In contrast, narrowband signals provide low downrange resolution.)
Much of the intuition developed from experience with ordinary (narrowband) radar
systems carries over directly to the wideband case. In general, however, the narrowband
ambiguity function may not be a completely accurate imaging kernel for rapidly moving
targets. Note also that the narrowband ambiguity function is related to the Wigner
distribution, while the wideband ambiguity function does not enjoy the same relationship.
However, we can dismiss any vague concern that Fourier methods may not apply to
wideband radars. As we have seen, Fourier methods work just fine in the present
analysis--provided that they are applied correctly.

To understand better the differences between the two approaches and to quantify the
possible loss in (narrowband) imaging accuracy, we shall compare A(ra) with

Z.(t, w) for various bandwidths. If we set w.(t) = w=.(t) = e•O's(t) then, in terms of the
narrowband imaging kernel, we can write

S- l)w.) 2z4aveO''Z.(,(a - 1)w,)

"= . e"i t Js(u + t( s1 (u)e'()-1O-" du

= Fafae"' Ji(w)S'(aw- (1- a)wo)e"' do.

Whereas, the corresponding wideband imaging kernel is

A(t / a,a) a A.(t I a,a)=Na1e"'"' fs(au+ t)s'(u)e'f'-)°" du

(7.2)

= raie"' fi(wo)F(aoi-(l -a)wo)e doi.
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As a concrete example, consider the Gaussian waveform S(ro) = D,, ezP(-+46co').
This waveform is computationally easy to deal with and is almost in H 2(R) when o, is
sufficiently large-say co. : Bandwidth /2. [In this case, it is appropriate to use the
Woodward Bandwidth (Reference 23):

2 = - j CO 2 e-0' dCo , (7.3)

sinceD = D2. -/r.] Substitution of this Gaussian waveform into Equations 7.1 and 7.2
yields

;et(- )(,)= Le # ie'P e*p- Pf(l - a)2(p.2) f e+ &0p2 + (fio, (1- a) + it)co] dw

(7.4)

-va Je4p i~ 3 wac.t)exP(+Jf(l - a) J,)eP(t2-( 4a)P~

and

A La= ~~ew'ep J -a) 2 ai2) Jeqj-jp(1+a 2)(0 2 + (Pwoa(1 + a) + it)o]dw

(7.5)

2a 1 +a c 2) t2 2(l -a) 2) 2 a '"

=l-+a2 -j o.t)e 4(- (-a) +. ,)ex2 2P-a(1-)+a 2)

For fixed a, the scatterer location (in time) will be estimated by the maximum of the
respective ambiguity functions. If tA denotes the estimate from the wideband ambiguity
function A(t / a, a) and t. the narrowband ambiguity function j(t,(1 - a)co.) estimate,
then it is easy to see that
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tA- tr (a)p0, 4L w (7.6)

for w, . Bw. This difference vanishes when the target is not moving (a = 1). However,
downrange distances of moving targets will be overestimated by the narrowband

ambiguity function. But this error is usually not significant: if the target velocity obeys
M << c; hence,

v2
S 1c2 (7.7)

tA tX - 4 0w

(We can show that the phase error is similarly insignificant, but the phase term is usually
ignored.)

In the narrowband case, it is still true that increasing bandwidth will increase time

resolution. The example shows that when A(o) is chosen to be symmetric and centered
on w.Ž i-Bw there is little difference between the wideband and narrowband results (at
least as far as radar systems are concerned). This is, perhaps, why the "widebandness" of
radar is sometimes defined by the ratio of bandwidth to center frequency.

In the Hardy space case, no such minimum size restrictions for w. exist; however, it
is important to remember that these waveforms should be elements of Hardy space. This
requirement guarantees that we will not have any unexpected artifacts obtained by trying
to represent functions that are members of H2(R) by elements of L2(R). Moreover,
often it may be advantageous to consider proper waveforms (i.e., with nonsymmetric
spectra) for radar-detection applications (c.f., Reference 21). In this case, the differences
between the narrowband and wideband imaging kernels may become significant because
of the way the imaging kernel is sharpened when a < 1.

8. CONCLUSION

It is not surprising that, for radar applications, the wideband and narrowband
ambiguity functions should yield such close results. After all, they only differ by terms
of order v /c. Moreover, if there were serious errors in the way the narrowband
ambiguity functions performed, then surely they would have been discovered in a half-
century of radar-system development. (Sonar applications are another matter, however,

27



NAWCWPNS IrP 8098

and all of these results carry over to acoustic sensing but with the possibility that v / c
can, in practice, become significantly large.)

However, we should not conclude that wideband ambiguity functions are merely a
mathematical curiosity. The narrowband analysis does not tell the entire story, and
intuition gained from it is not complete. The shift in attention from time-frequency to
time-scale representations is made natural by the shift from narrowband to wideband
ambiguity functions. In turn, the representation of signals by affine covariant states
(wavelets) holds the potential for significantly improving the imaging capabilities of
future radar (and sonar) systems (c.f., Reference 21 and references cited therein).

Current work has been concentrated on demonstrating the utility of this approach
using actual and simulated frequency domain data. Stepped frequency data collected
over large bandwidths have been in use for many years, and filtering techniques allow for
easy modification to the present purposes.

Current plans for future work include a detailed investigation into appropriate
choices for radar waveforms, as well as practical techniques for generating them in the
time-domain.
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Appendix

MOTIVATION FOR THE MEASURE dTdD / D

In the narrowband case, the equivalent to Equation 5.9 can be written

(ejfXt,wo)= j pTDiT-,-~~Q (A.1)

This is a correlation integral between p and x, and so obeys the (Fourier)
correlation theorem:

i g(x')h(x + x)dx" <-- j(y)k•(y), (A.2)

.. 4. F

where ýc* denotes Fourier transformation. We would like Equation 5.9 to also obey aF
correlation property. The measure choice dx x allows us to do this, since under the
Mellin transform (Reference 24),

where c* denotes the Mellin transformation:
M
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i(y). ajg(x)xY'd.r (A.4)
0

Alternately, we can avoid any mention of Mellin transforms and force integrals of
the type in Equation A.3 to appear to be the kind of correlation integrals we are used to.
This can be accomplished by making the change of variables x -+ e', which yields

jg(x')h(:!)!L. -+ jG(u')H(u' -u~ (A.5)

where G(u) ff g(e"). (This approach is used in Reference 19.)

Independent of the motivation for this choice of measure, the consequences have
been important for us. It was this measure that was responsible for the signal
admissibility condition of Section 6 and for the logarithm appearing in the argument of
Equation 6.2.
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